

LECTURE 17

GOALS OF TODAY'S LECTURE

- A partial algorithm for determinizing timed aut/. L complete for several subclasses of T.A.

When are Timed Automata Determinizable?

Christel Baier¹, Nathalie Bertrand², Patricia Bouyer³, and Thomas Brihaye⁴

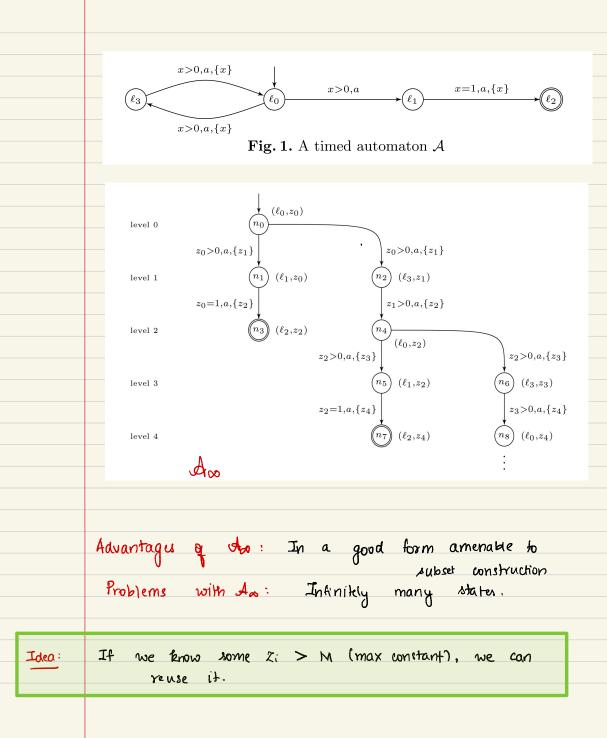
¹ Technische Universität Dresden, Germany
 ² INRIA Rennes Bretagne Atlantique, France
 ³ LSV, CNRS & ENS Cachan, France
 ⁴ Université de Mons, Belgium

Main idea: How to make a subset construction work?
Recall the problem with subset construction:

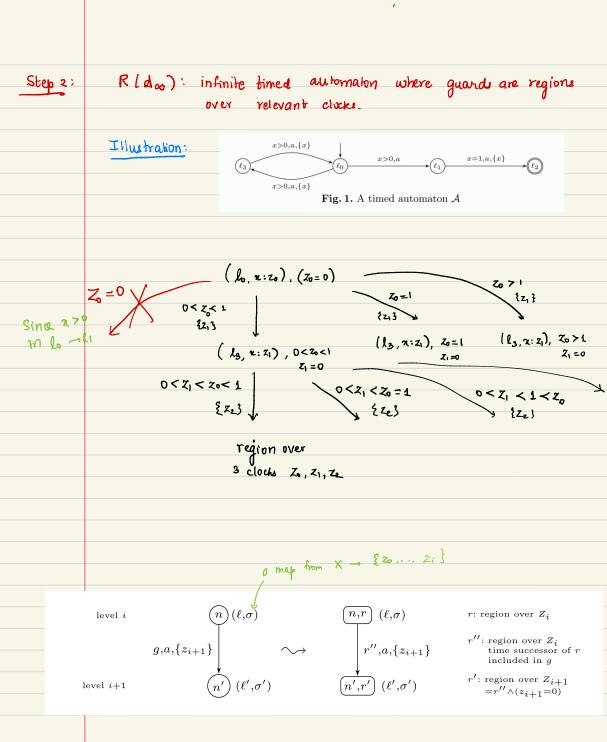
$$q$$
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 q
 q
 z_{N3}
 q
 q
 q
 z_{N3}
 q
 q
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 z_{N3}
 q
 z_{N3}
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 q
 z_{N3}
 q
 z_{N3}
 q
 q
 z_{N3}
 z_{N3}
 q
 z_{N3}
 q
 z_{N3}
 $z_$

To tackle these two problems, BBBB'09 gives a construction where for each level - a new clock is reset 9 223 91 Level o initial states of NTA . 22,3 91 Level 1 {z23 • 0 . . Level 2 . . - This is the basic idea. There are two challenges - the constructed automaton should be language equivalent - it has to be finite.

Automaton ut: (Running example) $x > 0, a, \{x\}$ $x = 1, a, \{x\}$ x > 0, a ℓ_1 ℓ_3 ℓ_0 $x > 0, a, \{x\}$ Fig. 1. A timed automaton \mathcal{A} A[∞]: Infinite tree given by the unfolding of ut: - a new clock is reset at each level. Step 1: $z_{0} > 0 \quad l_{0} \quad z_{0} >$ $z_{1} \\ z_{1} \\ z_{1}$ n: Zo K: Zo l Z >0 20=1 223 1223 l2 lo 2: 22 Z270 Z270 Z270 Z270 Z270 Z270 Z270 x: X2 h 3 2:23 ./]

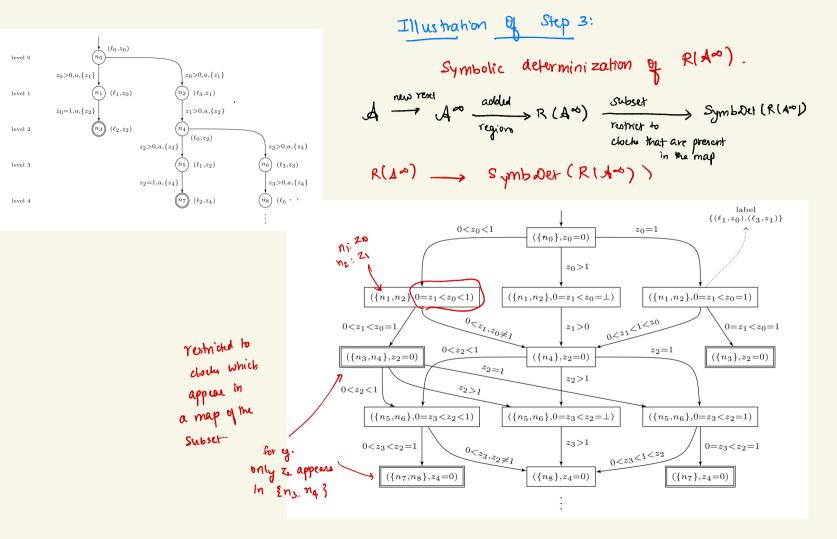


A - A. Advantage: It is in a good form for subset construction Problem: Infinite. - We want to be able to "reuse" clocks {{**z**i}} 1 2213 Suppose we know that at a state, value of Z: > M (M. maximal constant occurring in 19 $x: z_c$ and $z_i \ge M$ - L x: 1 and make zi free. To dekct Zi>M, we will make use of a region-style construction.



Currently we have an infinite tree whose nodes are:
Level it:
$$(l, \sigma), r$$
 region over $\{z_1, \dots, z_i\}$
State of NTA a map of clocks to z_0, z_1, \dots, z_i
 $x_i \mapsto z_{k_1}$
 $x_i \mapsto z_{k_n}$
Advantage: -1. Amenable to subset construction since
game rates on all autoping transitions.
 $\{z_{inj}\}$
 -2 . Node contains information about which clocke
 $are grove M$.
Problems: - Still infinite
To make it finite we need a facility to reuse clocke
At a first sup, we restrict region to "active clocks".

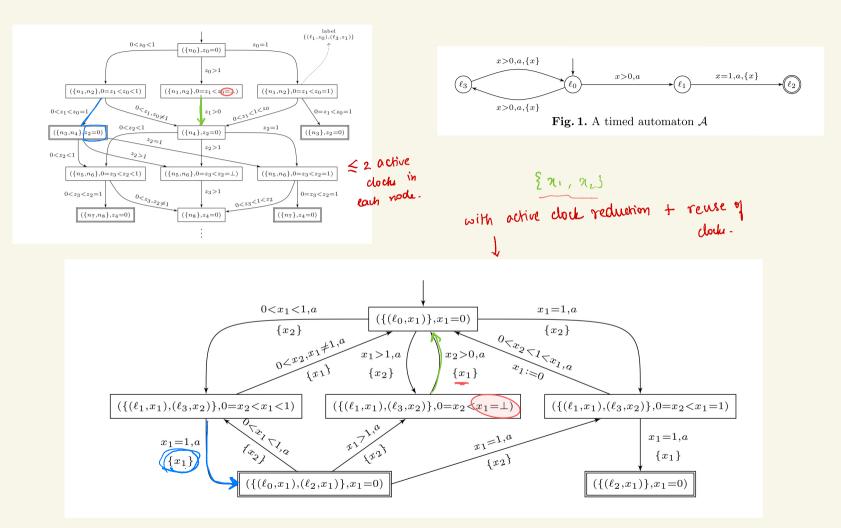
Active clocks: A clock Zi is active at node (l, o), r if - 1. Some do de 'n' is mapped to Zi AND -2. $Z_i \leq M$ in the region r'. First of all, note that if some clock z; is not mapped to any clock in σ, then its value is useless for the future. So it can be removed. - Secondly, if $\sigma(\alpha) = x$; and x > M in r, then we can maintain this information in σ itself. $\partial(x) = \bot$ (to denote that its value > m) Once again, such a Zi can be removed. We can therefore assume that the region in R(A⁰⁰) are only over active clocks! We now perform a subset construction on this region tree.



Final observation: If the number of active clocks is bounded by r, we can reuse clocks and get a finite timed automator. X = En, n2, ... ny 2 based on some deterministic policy. One more optimization: - If the successor is due to a "zero-time" successor of the region, then use the previously reset dock (in the transition that lead to this region). £23 $\begin{cases} \left(l_{1}, \sigma_{1}\right) \dots \left(l_{\ell}, \sigma_{\ell}\right) \\ \right\}, & \gamma \models \mathcal{I} = 0 \end{cases}$ r' [D-time successor, that is: r'=r}

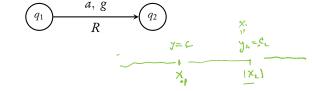
A
$$\{y_1, y_2, \dots, y_n\}$$

A $\{y_1, y_2, \dots, y_n\}$
A $\{z_1, z_1, z_1, \dots, z_n\}$
A $\{z_1, z_1, z_1, \dots, z_n\}$
A $\{z_1, z_1, z_1, \dots, z_n\}$
A $\{z_1, z_1, \dots, z_n\}$
A $\{z_1, z_1, \dots, z_n\}$
A $\{z_1, z_2, \dots, z_n\}$
A $\{z_1, \dots, z_n\}$



Question: - What are some sufficient conditions for an automaton to thave Only finitely many active clock? that is, finite T. Coming next: Two subclasses of NTA for which this construction works.

Integer reset timed automata



Conditions:

- ▶ g has integer constants
- ► *R* is **non-empty** \Rightarrow g has some constraint x = c

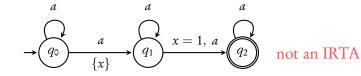
Implication:

 Along a timed word, a reset of an IRTA happens only at integer timestamps

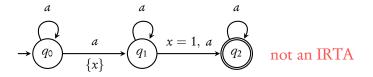
Timed automata with integer resets: Language inclusion and expressiveness

Suman, Pandya, Krishna, Manasa. FORMATS'08

$$\rightarrow \underbrace{q_0}_{\{x\}} \xrightarrow{x = 1, a} \underbrace{q_1}_{\{x\}} \xrightarrow{x = 1, a}_{\{x\}} \text{ an IRTA}$$



$$\rightarrow \underbrace{q_0}_{\{x\}} \xrightarrow{x = 1, a} \underbrace{q_1}_{\{x\}} \xrightarrow{x = 1, a}_{\{x\}} \text{ an IRTA}$$

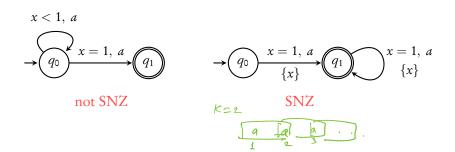


Next: determinizing IRTA using the subset construction

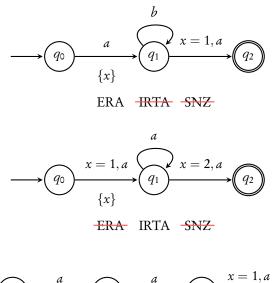
Strongly non-Zeno automata

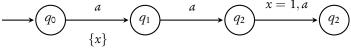
A TA is strongly non-Zeno if there is $K \in \mathbb{N}$:

every sequence of greater than K transitions elapses at least 1 time unit

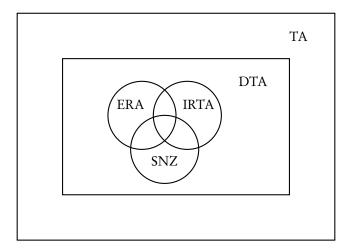


- In a SNZ automaton, every sequence of K(M+1) transitions dapres > M time unitr. - Therefore when there K(M+1) active docks in a node, the oldul entrant will become inactive and can be reused again.





ERA IRTA SNZ



Summary: - A method to determinize NTA, that works for certain classer. - New subclasses seen: IRTA SNZ. For a genunic A, this algorithm may not work. Can we decide, given X, whether the no of active clocks in Symb Det (R (11)) is finite? -> Griven st, can we dreade whether this algorithm will work for this automaton or not? Gilven NTA A. dow there enist a language equiv. PTA. Lo Underiderce.